Effects of lactate on the voltage-gated sodium channels of rat skeletal muscle: modulating current opinion.
نویسندگان
چکیده
During muscle contraction, lactate production and translocation across the membrane increase. While it has recently been shown that lactate anion acts on chloride channel, less is known regarding a potential effect on the voltage-gated sodium channel (Na(v)) of skeletal muscle. The electrophysiological properties of muscle Na(v) were studied in the absence and presence of lactate (10 mM) by using the macropatch-clamp method in dissociated fibers from rat peroneus longus (PL). Lactate in the external medium (petri dish + pipette) increases the maximal sodium current, while the voltage dependence of activation and fast inactivation are shifted toward the hyperpolarized potentials. Lactate induces a leftward shift in the relationship between the kinetic parameters and the imposed potentials, resulting in an earlier recruitment of muscle Na(v). In addition, lactate significantly decreases the time constant of activation at voltages more negative than -10 mV, corresponding to an acceleration of Na(v) activation. The slow inactivation process is decreased by lactate, corresponding to an enhancement in the number of excitable Na(v). In an additional series of experiments, lactate (10 mM) was only added to the petri dish, while the pipette remained sealed on the membrane area. With this approach, the electrophysiological properties of Na(v) were unaffected by lactate compared with the control condition. Altogether, these data indicate that lactate modulates muscle Na(v) properties by an extracellular pathway. These effects are consistent with an enhancement in excitability, providing new insights into the role of lactate in muscle physiology.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملTumor necrosis factor-α downregulates sodium current in skeletal muscle by protein kinase C activation: involvement in critical illness polyneuromyopathy.
Sepsis is involved in the decrease of membrane excitability of skeletal muscle, leading to polyneuromyopathy. This effect is mediated by alterations of the properties of voltage-gated sodium channels (Na(V)), but the exact mechanism is still unknown. The aim of the present study was to check whether tumor necrosis factor (TNF-α), a cytokine released during sepsis, exerts a rapid effect on Na(V)...
متن کاملPartial recovery of skeletal muscle sodium channel properties in aged rats chronically treated with growth hormone or the GH-secretagogue hexarelin.
This study was aimed at investigating the effects of chronic treatment of aged rats with growth hormone (GH, 8 weeks) or the GH-secretagogue hexarelin (4 weeks) on the biophysical modifications that voltage-gated sodium channels of skeletal muscle undergo during aging, by means of the patch-clamp technique applied to fast-twitch muscle fibers. Two phenotypes of aged-rat fibers could be discrimi...
متن کاملPropofol blocks human skeletal muscle sodium channels in a voltage-dependent manner.
UNLABELLED Propofol decreases muscle tone in the absence of neuromuscular blocking drugs. This effect probably cannot be attributed solely to central nervous depression. We studied the effects of propofol on heterologously expressed skeletal muscle sodium channels. Our hypothesis was that the decrease in muscle tone may partly be attributed to an interaction of propofol with sarcolemmal sodium ...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 112 9 شماره
صفحات -
تاریخ انتشار 2012